
A REAL-TIME COMPUTER ARCHITECTURE BASED ON A CLIENT-SERVER
APPROACH FOR A MULTI-ARM ROBOT MANIPULATION (MARM) PLATFORM

D. Antonucci1, A. Margan1, A. Laurenzi1, A. Rodriguez2, P. Romeo2, J. Barrientos2, J. Estremera2, A. Rusconi3,
G. Sangiovanni3, N.G. Tsagarakis1, and S. Cordasco1

1Istituto Italiano di Tecnologia (IIT), Via S. Quirico 19d, 16163 Genova GE
2GMV, Isaac Newton 11 Tres Cantos 28760, Madrid, Spain

3Leonardo S.p.A., Viale Europa, 20014, Nerviano, Italy

ABSTRACT

This paper introduces the real-time computer architec-
ture developed for the Multi-arm Robot Manipulation
(MARM) platform realized within the MIRROR project:
Multi-Arm Installation Robot for Reading ORUS and Re-
flectors, Figure 1.

We provide an extensive description about implementa-
tion challenges and design decisions, and finally validate
our architecture on the real robot testing it with differ-
ent use-cases. Furthermore, we also considered and man-
aged some safety aspects related in situations of control
deterioration due to communication quality degradation,
considering also recovery actions.

Key words: real-time; safety, MARM; MIRROR.

1. INTRODUCTION

The recent increasing demand of robotic platforms for
space applications, highlights the need of effective and
robust embedded hardware and software architectures
that ensure the real-time performance of the customized
robotic platforms, providing flexibility in implementing
high level control modules the execution of which is de-
coupled from the execution of the real-time critical soft-
ware components. To achieve this, a physical separation
in term of embedded systems is needed, where one em-
bedded computation unit is dedicated for real-time (RT)
performance needed for controlling the actuators, sensors
reading or other RT devices operations and the other one
(or more) devoted for high level control tasks that do not
strictly require hard real-time performance (i.e percep-
tion and visual servoing, gravity compensation or carte-
sian space tasks etc..). This avoids most issues related
to software dependencies such as different operating sys-
tems, libraries or other OS environmental conditions, or
hardware performances and resources sharing and needs
between hard and soft real-time processes.

The Figure 2 shows the client-server approach and hard-

Figure 1. The Multi-Arm Relocatable Manipulator
(MARM) robotic platform developed for SPACE applica-
tion.

ware components in the MIRROR project where the
client runs together with the high level application im-
plementation inside the Robot Control Unit.

The server, instead, is an internal process of an EtherCAT
Master module, which runs in its dedicated Embedded
PC, and exploits the EtherCAT protocol to read or write
data objects to the EtherCAT slaves (RT devices installed
on the robotic platform). In order to interact and oper-
ate them ,the high level application needs to instance a
client calling the APIs provided enabling the interaction
between the high level application and the low level RT
components through a set of commands that include:

• client/server protocol initialization (connect, discon-
nect, quit server, etc..);

• setting of control modes;

• start/stop actuation;

• release/engage brakes;

Figure 2. High level overview of the hardware and soft-
ware/communication design of the MARM robotic plat-
form

• read actuation states, force-torque sensor, IMU,
power board date and the states of other devices pro-
viding full telemetry of the robot state;

• write actuation set point references;

• read/write service data object;

2. ARCHITECTURE DESIGN

The first study, trial and consolidation of this architecture
employs the UDP protocol to exchange data, in particular,
the boost::asio 1 is used for the network protocol while
the msgpack 2 performs the packing and unpacking of
data. The UDP choice is a project request since these
APIs are used by our partner (GMV company) within the
project MIRROR. Instead the use of packaging helps to
manage the data transfer quickly and transparently.

Figure 3. Schematic overview of the proposed software
and control architecture

Both Client and Server have to open an UDP socket
where the communication should be established, then
create command and event handlers. The commands
are used by the client to send requests to the server like

1The boost::asio library is described at https://www.boost.
org/doc/libs/1_78_0/doc/html/boost_asio.html

2The msgpack library is described at https://msgpack.org/

start/stop motors, release and engage the brakes or send
references, in the same way, the server sends the motors
status or other information to the client. As the com-
munication protocol is asynchronous the event handlers
are important for receiving between the endpoints, i.e
ACK/NACK of a client’s command from the server that
has already handled the request via its event handler.

2.1. Event handler

The event handlers are simple functions that have to be
registered, i,e:

// Register Message Handler
registerHandler(ServerMsg::MSG_MOTOR_STATUS,
&Client::motor_status_handler);

When the event is raised the function registered will be
called and then it’s possible to unpack the data and ma-
nipulate them.

void Client::motor_status_handler(char *buf,
size_t size)

{
_mutex_motor_status->lock();

static MSS motors_status;
// unpacking
auto ret =
proto.getEscStatus(buf,

size,
ServerMsg::MSG_MOTOR_STATUS,
motors_status);

// manipulation
.......
_mutex_motor_status->unlock();

}

Note: The mutex mechanism is useful to synchronize the
client code with the high level application process.

2.2. Command handler

As already mentioned the commands are used to send re-
quest to the server or client, i.e:

bool Client::start_motors(const MST &motors_start)
{

CBuffT<4096u> sendBuffer{};
bool ret_cmd_status=false;
// packing
auto sizet =
proto.packReplRequestMotorsStart(sendBuffer,

motors_start);

// send
do_send(sendBuffer.data(),

sendBuffer.size());

// ACK/NACK information
ret_cmd_status= get_reply_from_server(

ReplReqRep::START_MOTOR,
repl_msg);

return ret_cmd_status;
}

When a command is called it’s possible to pack the data
and send them, waiting eventually the ACK/NACK feed-
back.

2.3. Client-Server state machine

Two state machines were implemented to make the mech-
anism more consistent due to the asynchronous protocol,
helping high level robotic controller to send the com-
mands in the right way, getting right feedback. The Fig-
ure 4 shows the UML state machine diagram of the UDP
Server:

Figure 4. Schematic overview of the UDP sever state ma-
chine

The Server is the process that runs with EtherCAT Mas-
ter and waits that a Client sends the connect command.
When one of it is detected, its state change into con-
nected where it’s possible to receive the commands for
managing the real-time slaves (Server Ready state). Fur-
thermore, it communicates its alive state with a specific
periodicity. This is useful to understand if the mecha-
nism is still standing or not. Of course you can return to
idle state with the disconnect command. Staying in
the connection state, instead, the server can move in dif-
ferent ”operative states”, Motors Started, Controlled and
Stopped with Client-Server software APIs. An important
consideration is related on Motors Controlled state, here,
it’s possible to move or stop the robot remembering to
use the release or engage brakes command in according
with robotic controller decisions. The feed_motors

API is used to send references with different flag op-
tions, MULTI REF for continuous robot manipulation
and LAST REF for completing the movement and re-
turning back in the Motors Started State. In addition,
safety checks were implemented during the robot mo-
tion in order to guarantee the communication quality that
will be taken up at Section 3. The Server sends contin-
uously the state of the robot, including the state of the
motors, sensors and other slaves as soon as it receives the
get_slaves_description command before enter-
ing the operative states or in Motors stopped, where it
is also possible to write the service data objects (SDO).
Instead, the read SDO API is always available when the
server is connected.

Figure 5. Schematic overview of the UDP client state
machine

The Figure 5, instead, presents the UML diagram of the
UDP Client. The Client is a thread of the high level appli-
cation process which is responsible to call the APIs in ac-
cording with the robot control goal. At first it’s necessary
to setup the periodicity and then send the connect com-
mand moving the Client’s state machine from idle to con-
nected. Here (Client Ready state), it’s possible to receive
back the server status synchronizing the Client-Server
state machines, verifying also that the communication is
still alive. Before entering in the ”operative states” (Mo-
tors Started, Controlled and Stopped) like the server case,
an auto-detection or discovery procedure of EtherCAT
slaves is needed, using the retrieve_slave_info
request. Moving the machine into the Slaves Mapped,
the high application (robotic control) can start to read the
robot state (motors, sensors or other real-time devices)
closing its control loop. Finally it’s possible to operate
the robot exploiting the same APIs described in the server
state machine. About the SDO APIs, read and write,
these are useful during the calibration and testing phase,
for this reason, the writing operation is available only in
some states.

2.4. Client-Server sequence diagram

The following schematic in Figure 6 presents the UML
sequence communication diagram of a typical use case

for using the robot.

Figure 6. The sequence communication diagram of the
overall system

The high level application, for starting the communica-
tion flow, needs to set the client periodicity, send the
connect command and detach a thread calling the run
API (since it’s a blocking call from boost::asio specifica-
tion), capturing the server events, status, feedback and
data (PDOs). At this point the high level application
(main process) can operate the robot calling the following
commands creating a typical use case:

• retrieve slave info;

• start motor controllers and release brakes;

• send references

• engage brakes (before stopping phase);

• stop motors;

• stop client;

As it can be observed in the diagram, every command
is an optional activity based of the success of the previ-
ous step. The client tries for three times the commands

before getting the right answer from the server. A par-
ticular situation is the send references activity where the
feed_motors API is called until the robot manipula-
tion is completed, reading also the motors status. When
this is completed it is then possible to engage the brakes
for stopping the motors. The stop_client request al-
lows the application to close the client and server com-
munication. Note that this diagram describes a common
use case for operating the robot, but it’s possible to im-
plement also other sequences for operating the platform,
especially for managing the release/engage brakes APIs.
For instance, they might be used in the send references
loop, the main necessity is is to use the release the brakes
command before moving the robot and engage the brakes
before stopping the motor controllers.

3. SAFETY

Two safety controls were also developed to verify the
communication in terms of communication degradation
as well as the healthy operation of the robot actuation
system. The rolling_mean functions in the boost li-
brary 3 are used to evaluate the communication quality in
a specific window. The mean in that window is controlled
verifying the desired communication frequency for the
data exchange along the communication pipeline, acti-
vating appropriate recovery actions in the system control
if degradation of the communication quality is detected.
The robotic controller can choose different communica-
tion frequencies using the set period API from the safety
frequencies range allowed, greater a minimum frequency
level of 225 Hz or less than or equal to 500 Hz. Further-
more, the rolling window size can be set before running
the server process, the default size of which is equal to
100.

Figure 7. Rolling mean function example

The Figure 7 introduces an example for the rolling mean
function calculated on 1s communication having as sam-
ple time equal of 2ms, getting the samples randomly in

3The rolling mean function is is described at https:
//www.boost.org/doc/libs/1_81_0/doc/html/
accumulators/user_s_guide.html#accumulators.
user_s_guide.the_statistical_accumulators_
library.rolling_mean

that range (blue line), computing the rolling mean with a
window equal to 100 (read line).

The Figure 8 shows a typical server log during the send
references operation:

Figure 8. Rolling mean logging of the UDP Server

The other safety check is related to the detection of com-
plete communication break. In particular in the case that
the server detects that the time difference between the
last actuation set-points and the actual server periodic-
ity is greater than a specific period the recovery action is
activated to safely terminate the operation of the system
and bring the robot actuation in idle mode engaging their
brakes.

4. USE CASES AND VALIDATION

The proposed architecture was implemented and vali-
dated on the MIRROR robot platform, under different
control modes including position and impedance control
settings. Furthermore, we also validated the proposed ar-
chitecture and safety features while the robot was con-
trolled in pure torque mode (impedance mode with stiff-
ness and damping gains equal to zero) providing the joint
torque references derived from the gravity compensation
module.

Figure 9. High level schematic of the use cases

Basically two use cases were implemented, one real-
izes a trajectory generator module that produces joint
space references, starting the motors with different con-
trol mode and gains, and the other one implements a
gravity compensation task using a library called XBot-
Interface (ModelInterface) developed by Humanoids and
Human Centered Mechatronics (HHCM) research line
[LATM23, MLMHT20, LHMT19]. All use cases call the
APIs in the same order shown in the UML sequence di-
agram (Figure 6), they also use an external configuration
file where it’s possible to setup the UDP protocol, con-
trol mode, trajectories (Homing, General trajectory), high
level robotic libraries, URDF and SRDF:

Figure 10. Client-Server configuration file

During the send references loop, the joint space trajec-
tory generator produces the joint trajectories, switching n
times from homing to the execution of the generated tra-

jectories. The gravity task, instead, having started the
motors in impedance mode, regulates smoothly to re-
duce the joint stiffness and damping gains to zero, leav-
ing a pure torque reference to be tracked by the torque
controller running on the robot joints. It then start to
send the torque references to compensate the gravity, cal-
culated by the ModelInterface [LATM23, MLMHT20,
LHMT19]. As soon as the compensation is interrupted
by the user, they gains will be smoothly restored, having
back the impedance controller ready to follow the posi-
tion references received by the task.

It important to report that all use cases were tested with
different sample times (2..4ms) having always an Ether-
net point to point connection between the real robot and
the external machine.

The following flow chart in Figure 11 presents the use of
the APIs for testing and validation our MIRROR project
partner, the GMV company.

Figure 11. The GMV test procedure

They employ the torque controller loop where the their
high level application calculates the gravity compensa-
tion torque needed for each joint, having a centralized
robotic controller. They initially start the motors in
impedance mode, sending the release brake command
without waiting the real brake status. Following this, the
reference torques command are sent to compensate the
gravity due the releasing brake action. If the brake sta-
tus is equal to released, the torque trajectory is sent, of
course, reducing the stiffens and damping to zero, oth-
erwise the stopping procedure is triggered, engaging the
brakes and stopping the motors.

4.1. Graphical use interface

Figure 9 introduces an example of GUI developed e for
rapid testing and robot monitoring and debugging.

Figure 12. Schematic overview of the MIRROR GUI

In fact, using the Motor Reference page of the GUI it
s possible to start the MARM robot joint controllers in
position, impedance and idle mode, while also setting the
control gains. By Setting up the UDP communication and
by pressing the send button interface it’s possible to send
the references ot the joints moving the joints individually
and verifying the telemetry in the Motor Measured Data
page of the GUI. The stop reference button can be used
to stop sending the references to the joints and eventually
stop the controllers.

5. DISCUSSION AND CONCLUSIONS

We are currently working on extending the C++ APIs
to also include Matlab/Simulink and eventually Python
APIs.

Figure 13. Proposal of next software framework develop-
ment

This will allow the users to develop and design their high
level control strategies in different software environments
facilitating fast prototyping and tuning of the system high
level control and behaviors. Another goal is to extend the
communication protocol from UDP integrating ROS2 in
the future. The TCP protocol, instead, was the first imple-
mentation done inside the EtherCAT Master (2.0) using

the ZMQ library and google protocol buffer for serializa-
tion and de-serialization of data.

An important discussion point is related on the simula-
tion and testing of this software framework. At the mo-
ment it can’t offer the user the possibility to perform robot
model validation or robotic control strategy testing inside
a kinematics or dynamics simulator like RViz or Gazebo
or others. Of course, this development was out of scope
from the MIRROR project, where the HHCM research
line was responsible to cover this part [HLR+23]. For
this reason, we would develop other features related on
the simulation, maybe using ROS2, especially for testing
where actually is possible to verify the behaviour only
with the terminal log. Another aim is the improvement of
the logging phase for the post processing analysis.

ACKNOWLEDGMENTS

The development of the MARM platform is funded by the
European Space Agency (ESA) as part of the MIRROR
project.

REFERENCES

[HLR+23] E.M. Hoffman, A. Laurenzi, F. Rus-
celli, L. Rossini, L. Baccelliere, D. An-
tonucci, A. Margan, P. Guria, M. Miglior-
ini, S. Cordasco, R Raiola, L. Muratore,
J. Estremera, A. Rusconi, G. Sangiovanni,
and N.G. Tsagarakis. Design and valida-
tion of a multi-arm relocatable manipula-
tor for space applications. In 2023 IEEE
ICRA. IEEE, 2023.

[LATM23] Arturo Laurenzi, Davide Antonucci,
Nikos Tsagarakis, and Luca Muratore.
The xbot2 real-time middleware for
robotics. Robot. Auton. Syst., 163:104379,
2023.

[LHMT19] Arturo Laurenzi, Enrico Mingo Hoffman,
Luca Muratore, and Nikos Tsagarakis.
CartesI/O: A ROS Based Real-Time Capa-
ble Cartesian Control Framework. In IEEE
Int. Conf. Robot. Autom., pages 591–596,
2019.

[MLMHT20] Luca Muratore, Arturo Laurenzi, Enrico
Mingo Hoffman, and Nikos Tsagarakis.
The XBot real-time software framework
for robotics: From the developer to the
user perspective. IEEE Robot. Autom.
Mag., 27(3):133–143, 2020.

